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A new method of approximation is proposed which maintains many of the
essentials of the classical theory of best uniform approximation, while also using an
L ··type measure of approximation.

1. INTRODUCTION

The classical Chebyshev theory of best uniform approximation to
continuous functions by polynomials of degree ~n was initiated by
Chebyshev in [2]. This theory has a distinct advantage over the
corresponding ones for L q-norms, 1 ~ q < 00, in that the unique best approx
imant is characterized by a remarkable geometric property. Let f be a real
valued function, continuous on [0,1), and, for n = 0,1,2,..., let 1rn denote the
set of all real algebraic polynomials of degree at most n. Then p* E 1rn is the
unique best uniform approximant to f from 1rn if and only if there exist n + 2
points °~ XI < ... < X n +2 ~ 1, and a fixed a = ± 1, for which

a(-I)k(f-p*)(Xk)= max If(x)-p*(x)l,
O';;x';;l

k = 1,... , n + 2.

On the other hand, for q E (1, 00 ), P* E 1rn is the best L q [0, I] approximant
to f from 1rn if and only if

.1t l(f- p*)(x)lq-1 sgn(f- p*)(x) x k dx = 0,
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k= 0,1,... , n,
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a condition which is difficult to check, and which lacks the simple geometric
appeal of Chebyshev's characterization. For q = 1, the situation is even
slightly more complicated, but is essentially the same as for q E (1, co ).

In this paper, we propose a new method of approximation which
maintains the geometric flavour of Chebyshev's characterization of the best
uniform approximation, while also using an L qype (1 ~ q < co) measure of
approximation. We have, however, to pay a price, and the foremost cost is
that our "distance" function is not derived from a norm. However, this
drawback is not all that costly. We, perhaps surprisingly, do maintain the
uniqueness of a best approximant, and we are able to give a fairly simple
characterization thereof.

Let C[O, 1) denote the class of real-valued functions continuous on [0,1).
For IE C[O, 1), and q E [1, co), set

(
b) I/q

1II/IIIq = sup t I/(x)I Q dx , (A)

where the supremum is taken over all a, b, °~ a ~ b ~ 1, for which I(x) >°
on (a, b), or I(x) <°on (a, b). Let us also define

III/IIIQ* = sup u: I/(x)I Q dX) IN, (B)

where the supremum is taken over all a, b, °~ a ~ b ~ 1, for which I(x) >°
on (a, b), or I(x) ~°thereon. Thus, if 1= 0, then 1II/IIIq = 11I/111q* = 0. The
analogous definitions for q = 00 and IE C[O, 1) are simply 111/11100 =
111/11100* = 11/1100 = max{l/(x)l: x E [0, I)}.

With minor modifications, the results of this paper hold for all q E [1, 00)

(except for Theorem 4.1). However, for the sake of simplicity, we shall only
deal with the case q = 1, and for ease of notation we set, for every
IE C[O, 1),

111/111=111/1111'
111/111* = 1/111111*'

Before describing our results, let us note

LEMMA 1.1. The suprema in (A) and (B) are attained.

The proof is left to the reader.
We shall be concerned with the following two quantities:

inf 111/-pIli,
PEnn

(1.1)

(1.2)

(1.3)
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inf III!- p 111* .
PE1C n

(1.4)

We show (Theorem 2.5) that the infimum in (1.4) need not be attained, while
that in (1.3) always is. Furthermore, a p* E 1Cn which attains the minimum
(infimum) in (1.3) is unique, and is characterized by the fact that there exist
n + 2 consecutive disjoint open subintervals II' I 2 , ...,In + 2 of [0,1], and
a = ±1, such that

(_l)k aU- p*)(x) ~ 0 throughout Ik,

and

(_l)k aJU - p*)(x) dx ~ III!- p* III,
lk

for k = 1,..., n + 2 (Theorem 3.1).
If the infimum in (1.4) is attained, then it is attained only by the p*

pertaining to (1.3). It is attained if and only if there exist n + 2 consecutive
disjoint open subintervals I., 12 "",1n + 2 of [0, 1], and a = ± 1, such that

(_I)k aU- p*)(x) ~ 0 throughout Ik,

and

(_I)k aJU - p*)(x) dx = III!- p* 111*,
lk

for k = 1,2,..., n + 2 (Theorem 3.2).
Aside from considering the basic questions of existence, uniqueness and

characterization, we also provide analogues of de La Vallee-Poussin's bound
(Theorems 4.3 and 4.4) and of Bernstein's comparison theorem
(Theorem 4.5), and determine the minimal "norm" monic polynomial of
degree n + 1 for 111·111 and 111·111* (Theorem 4.1).

All the approximation results which follow are stated for 1Cn • However, the
analysis is such that these same results hold, mutatis mutandis, if we replace
1Cn by any Chebyshev system of order n + 1.

2. PRELIMINARIES AND EXISTENCE RESULTS

On the basis of Lemma 1.1, we can restate the definitions of 111·111 and

111·111*:
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DEFINITION 2.1. For IE e[O, I],

1I1II11 = max llf I(x) dx I: °~ a ~ b ~ l,f(x) >°on (a, b),

orflx)<oOn(a,b)(, (2.1)

111/111* = max llf I(x) dx I: °~ a ~ b~ l,f(x) ~ °on (a, b),

or I(x) ~°on (a, b) !. (2.2)

Observe that the sets in (2.1) and (2.2) are nonempty, as a is allowed to
equal b. From the definitions it follows that, for IE C[O, 1],

111I11I ~ 111/111* ~ 111111 ~ 11/1100' (2.3)

where 11/111 = g II(x)Idx, and, as before, 11/1100 = max{l/(x)l: x E [0, I]}. On
the basis of Definition 2.1, the following result is evident.

LEMMA 2.2. For every IE C[O, I],

(a) 11II111 = °if and only if f(x) = °lor all x E [0, I], and similarly
for 111/111*.

(b) IIIE C[O, I], and e is a real number, then

Illeflll = lel·lll/lll,
Illeflll* = lei· 111/111*·

Neither 111·111 nor 111·111* are norms.

PROPOSITION 2.3. Neither 111·111 nor 111·111* satisfies the triangle inequality.

Proof Let I(x) == Ix - (1/2)1- (1/8), and g(x) == (1/2) -Ix - (1/2)1.
Then Illflll = Illflll* = 9/128, III gill = III glll* = 1/4, and 1111+ gill =
Illf+glll* = 3/8 > 1IIII11 + III gill = 111/111* + III glll*· On the other hand, it is
very easy to construct particular J, g E C[0, I] for which the triangle
inequality does hold.

We were unable to find a standard terminology for functionals satisfying
Lemma 2.2, but not necessarily satisfying the triangle inequality. Cwikel and
Peetre [3] call similar functionals "gauges," and we also shall use this term.
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Let f, 1m E C[O, 1], m = 1,2,..., and let 1m converge to f, uniformly on
[0, 1]. From (2.3) it easily follows that

lim 1II/m -/111 = lim 1II/m -/111* = O.
m-+C1:) m-+et)

(2.4)

However, it does not follow that limm~w 1II/m III = 111/111, or limm~w 1II/m 111* =
111/111*. An important property of 111·111 which will be used to prove the
existence of a III· III-best polynomial approximation is concerned with such
limit questions.

THEOREM 2.4. Assume that f, 1m E C[O, 1], m = 1,2,... , and 1m tends to
f, uniformly on [0,1]. Then

(2.5)

The middle inequality is an immediate consequence of (2.3). To show that
equality need not hold in the other two inequalities, consider the following
two examples.

Let I(x) == Ix - (1/2)1. Thus 111/111= 1/8, and 111/111* = 114. Set Im(x) ==
Ix-(I/2)1-(Ilm). Then 111/mlll* < 1/8 for all m~3, which implies that

lim 1II/m 111* = 1/8 < 111/111*·
m~w

On the other hand, set lm(x) == Ix - (1/2)1 + (11m), m = 1,2,.... Then
Illlmlll> 1/4 for all m ~ 1, so that

lim Illlm III = 1/4 > 111/111·
m~w

Prool 01 Theorem 2.4. We shall first prove the more important
inequality, namely,

IIIIIII ~ lim 111/mlll·
m~w

If 1== 0, then equality holds, by (2.4). Thus we assume Ii:. O. Let a = ± 1,
and 0 ~ a <b ~ 1 be such that

b

IIIIIII = a f I(x) dx,
a

where a/(x) > 0 for all x E (a, b). Let e > 0, and choose ~ > 0
(~ < (b - a)/2) so that

b-h

af I(x) dx > 111/111- (eI2).
a+ h
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Since al is bounded away from zero on [a + tJ, b - tJ], and 1m tends
uniformly to I on [0, 1], there exists an M such that, for all m ~ M,
alm(x) >0 on (a + tJ, b - tJ), and

b-b

af Im(x) dx ~ 111/111- e.
a+b

Thus 1II/m III ~ 111I111 - e, and therefore

111I111 ~ lim 111/mlll·m-oo

To prove the remaining inequality, we again assume that Ii: O. Suppose,
to the contrary, that

lim 1II/m 111* > 111/111*·m-oo

Thus 1m contains a subsequence, which we again denote by 1m' for which

lim 1II/m 111* = 111/111* + e,m-oo

e >0 being a constant. Hence, for every m ~ some M', there exists an
interval [am' bm]' and a am = ± 1, such that amlm(x) ~ 0 throughout
[am' bmJ, and

am (m 1m(x) dx ~ 111/111* + (eI2).
am

By passing to a subsequence, if necessary, we may assume that all
am = a = +1 or -1, fixed. Take a convergent subsequence of am' and one of
bm (again denoted am' bm), say, am ---t a, bm---t b. Thus, al(x) ~ 0 throughout
la, b], and

b

a f I(x) dx ~ 111/111* + (eI2).
a

But

.b

a J f(x) dx::;; Illflll*,
a

a contradiction.
We are concerned with the problem of approximating I from 7rn , using the

gauges 111·111 and 111·111*. The next result is an almost immediate consequence
of (2.5). However, for completeness, we include the proof.
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THEOREM 2.5. Let IE C[O, I], and n ~ 0.

(a) There exists a p *E 7C n lor which

inf III/-plll= 111/-p*lll·
PE1t n

(b) infpe ,," 1111- p 111* may be unattained.

Proof We first prove (b). Let IE C[0, 1] be defined to be linear in each
of the intervals (i/4, (i + 1)/4), i = 0, 1, 2, 3, and to satisfy 1(0) = 4,
1(1/4) =1(3/4) = 0, 1(1/2) = 2, and 1(1) = -6. Its graph is shown in Fig. 1.

Thus g/4 I(x) dx = 1/2, fij:/(x) dx = 1/2, and n/4/(x) dx = -3/4, so
that 111/111* = 1. Consider 1111- clll* for a given real c. If c ~ 0, then
1111- clll* ~ 1. If c> 0, then 1111- clll* > 3/4, and, clearly, 1111- (l/n)III*--+
3/4. So

inf 1111-plll* = inf 1111- clll* = 3/4
pe"o ceR'l

which is not attained.
Part (a) is a consequence of the lower semicontinuity of 111·111. Set

inf I1II- pili = C.
pe1f n

We may assume that °< C < 111/111. For m = 1,2,..., let Pm(x) ==
LZ=o a~m)xk i= °satisfy

lim 1111- Pmlll = C,
m-oo

I----"'"""----'----~-----.l.-·x

FIGURE 1
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and let,um =max{lalml !:°~ k ~ n} > 0. We first prove that,um is a bounded
sequence. If this is not the case, then there exists a subsequence, again
denoted by ,um' which tends to 00. By choosing suitable subsequences, we
may assume that, for m = I, 2,... , ,um = Ial;l I, with a fixed ko, and that, for
k=O, 1,...,n, alm)/,um converges, say, to ak, !akl ~ 1. Setp(x):= L:Z=oakxk,
and

m= 1,2,....

Then gm(x) tends uniformly to -p(x) on [0,1]. Since p(x) t 0, III pili > 0. By
(2.5),

lim Illgmlll~lIlplll>O.
m-+et)

However,

lim Illgmlll= lim ,u;;;'lllf-Pmlll=O.
m-oo m-oo

This contradiction proves that ,um is bounded.
Hence there are integers 1~ m, <m2 < ..., and reals ao, a l " .. , an for

which Iimj -+et) almjl = ak , k = 0, 1,..., n. Thus

n

~im Pm/x) = p*(x) = L akxk,
J-+et) k=O

uniformly in [0, 1]. By (2.5),

C = !im IIIf- Pm III ~ Illf- p* III·
)-+00 J

The definition of C implies that

inf Illf- pili = Illf- p* III·
pEnn

3. CHARACTERIZATION AND UNIQUENESS

If I and J are subintervals of [0, 1], then by 1< J we mean that x <y for
all x E I, and y E J. We shall also use the notation I <x <J, with the
obvious meaning. With this understanding, we now state our first main
result.

THEOREM 3.1. Let fE qo, 1], and n ~ 0. Then there is a unique
p* E 7rn satisfying

inf Illf- pili = Illf- p* III·
pE'lrn

(3.1 )
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This p* is characterized by the following property:
There exist n + 2 disjoint (nonempty) open intervals

and a = +1 or -1, fixed, such that,for k = 1,... , n + 2,

(a) (-ItaU-p*)~Oonlk'

(b) (_I)k a Ilk U - p*)(x) dx ~ Illf- p* III·

Proof Assume that p * E 7!n satisfies (a) and (b). Let p E 7!n' P i= p *. We
shall prove that Illf- pili> Illf- p* III· Suppose Illf- pili ~ Illf- p* III. We
claim that there exist xk Elk' k = 1,..., n + 2, for which

k= 1,..., n +2. (3.2)

But from (3.2) it is not difficult to infer that p - p* i= °has at least n + I
zeros, counting multiplicities, which is false. If, for some k E {I,... , n + 2},
(_I)k a(p - p*)(x) <0, for all x Elk' then, by (a),

(_I)k aU- p)(x) > (_I)k aU- p*)(x) ~ 0

for all x Elk' and hence,

(-I)k aJ(f-p*)(x)dx< (-I)k a J (f-p)(x)dx~lllf-plll~lllf-p*lll,
~ ~

contradicting (b).
Assume now that p* E 7!n satisfies (3.1). We shall prove the existence of

11'...,In+2 as in the theorem. We may assume f - p* i= O.
A maximal-definite interval is an I = (a, f3), 0 ~ a < f3 ~ 1, which, for

some a = ± 1 (the signum of I), satisfies:

(1) a(f- p*) ~ 0 on I;

(2) a L (f- p*)(x) dx ~ Illf- p* III;

(3) if J is an open subinterval of (0, 1), Ie J, and a(f- p *) ~ 0 on J,
then f - p* = 0 on JV;

(4) there is no open, nonempty subinterval of I having a or f3 as an
endpoint, throughout which f - p * = 0.

By straightforward arguments, there exists a maximal-definite interval, the
set of such intervals is finite, and they are all mutually disjoint. Let them be
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Let

have the same signum 0 1,

have the same signum -0I' and so on, until we reach

Jm<_I+I,· ..,Jm, (m s = m),

having the same signum. We wish to prove that s ~ n + 2. Suppose not. We
may assume

(_I)k + 1 (f- P*)(x) ~ 0 throughout JI'

whenever mk - 1 + 1 ~ I ~ mk , k = 1,... , s, where mo = 0 (for otherwise, we
consider -f). For j = 1,..., s - 1 (in case s> 1), choose an x j satisfying
Jmj <xj <Jmj+ l' and (f- p*)(xj ) = O. Such an xj exists since

(-I)H 1 (f- p*) ~ 0

and

(-I)j+ I (f- p*) ~ 0

Set

s-1

p(X) = TI (X j - x)
j= 1

on Jm .+ I'
}

(=1 if s = 1),

and let X o = 0, X s = 1. Since s < n + 2, p E '!tn'

We shall prove that there exists an e* > 0 such that, for all e E (0, e*),

Illf- p* - eplll < Illf- p* III,

contradicting the definition of p *.
Since (f- p* - ep)(xj ) = 0 whenever 1 ~j ~ s - 1, for all real e, it

follows from (2.1) that

where, on the right-hand side, the underlying interval for the gauge is
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!Xj_pXj] rather than [0, I]. It therefore suffices to prove that, for j= I, ...,s,
there exists an eUI >0 such that, for all e E (0, eU),

IIII- p* - eplll[xj_"Xj) < 1111- p* III·

Let j E {l,..., sf, and suppose no such eU) exists. Then there exist ep e2 , ... ,

all > 0, en --+ 0, such that, for n = 1,2,...,

Therefore there exists, for n = 1,2,..., an open subinterval In of [xj_pXj],
and an = ± I, for which

and

anJ (f - p* - en p)(x) dx ~ IIII- p* III·
I"

On (Xj_pXj), (-ly+lp(x»O, and throughout each JkS:[xj_pxj],
(-IY+l(f_p*)(x)~O. If an=(-ly+1 for some n, then, on In'
o~ (-IY+ I (f - P* - en p) <(-IY+1 (f - P*), and, hence,

1III- p* III ~ (-I)i+ 1 J(f - p* - en p)(x) dx
I"

<(-I)i+ 1 J(f - p*)(x) dx
I"

~11I/-p*lll·

Thus an = (-I)j for all n.
For n = 1,2,..., let In = (an' bn), so that x j_1~ an <bn~ Xj' There exist

integers 1~ n1 < n2 < ... such that ank --+ a, and b
nk

--+ b. It follows that

and

(-IY(f-p*)~O on (a, b),

.b

(-I)j J (f-p*)(x)dx~lll/-p*lll·
a

Hence (a, b) <;; (Xj_ p Xj) must intersect some maximal-definite subinterval Jk

of [xj _ 1 , xj ] at a point where 1- p* =1= O. A contradiction now ensues, since,
at such a point, the above discussion implies that sgn(f- p*) is both (_I).i
and (-I)j+ I. This completes the proof of the theorem.
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We shall now consider an analogue of Theorem 3.1 for the gauge 111·111*.
We prove that, for a fixed n, inf{lIlf- plll*: p E 1tn}, if attained, is uniquely
attained by the p* of Theorem 3.1.

THEOREM 3.2. Let fE qo, 11, and n ~ O. Then

inf Illf- p\ll*
pEnn

(3.3)

is attained if and only if there exist n + 2 disjoint (nonempty) open intervals
I I < ... < In + 2' and a = +1 or -1, fixed, such that, for k = 1,..., n + 2,

(a) (-l)ka(f-p*)~OonIk'

(b) (_l)k a Ilk (f- p*)(x) dx = Illf- p* 111*,

where p* is the unique minimal polynomial given in Theorem 3.1. If the
infimum in (3.3) is attained, then it is attained by p* only.

Proof. It follows from Theorem 3.1 that only p* of that theorem can
satisfy conditions (a) and (b) of Theorem 3.2. Namely, if ft E Ten satisfies, for
k= 1,..., n + 2,

(a') (-1 )k a(f- pl ~ 0 on I k'

(b') (_l)k a L
k
(f- ft)(x) dx = IIlf- ftlll*,

where I. < ... < I n +2 are disjoint (nonempty) open intervals of [0,11, and
a = ±1, then, since Illf - ftlll* ~ Illf- ftlll, it follows by Theorem 3.1 that
ft =p*. Assume that p* does satisfy these conditions. The fact that p* is the
unique minimum approximant with respect to the gauge 111·111* is proven in
exactly the same way as was the analogous result of Theorem 3.1. It thus
remains to prove that if the infimum (3.3) is attained by some ft E Ten' then ft
satisfies conditions (a') and (b').

We may assume f - ft =i= O. Analogously to the definition given in the
proof of Theorem 3.1, we define a definite interval to be an I = (a, fJ),
o~ a < fJ ~ 1, which, for some a = ± 1 (the signum of I), satisfies

(1) a(f-pl~O on I;

(2) a fr (f- pl(x) dx = Ilif - ftlll*;

(3) no open proper subinterval of I satisfies (1) and (2).

Again, the set of definite intervals is finite but nonempty, and they are
mutually disjoint. Let them be
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As in the proof of Theorem 3.1, assume that

have the same signum 0 J ,

have the same signum -01 , and so on, until we reach

(m s = m),

having the same signum. We shall prove that s ~ n + 2.
Suppose s < n + 2, and assume that

(_I)k+! (f-pl(x)~O

whenever mk_ 1 + I ~l~mk' k= I,...,s, where mo=O (otherwise consider
-I). We proceed as in the proof of Theorem 3.1. As therein, there exists, for
j= 1,...,s-1 (in case s> I), a point xJ' satisfying Jm,<xJ,<Jm'+I' and

• J J

(f- pl(xj ) = O. Set, agam,

s-I

p(x) =TI (xj - x)
j=1

(=1 if s= 1).

Thus P E 7rn • Entirely analogously to the reasoning of the proof of
Theorem 3.1, we can show that, for j = I,..., s, there exists an eU) >0 such
that, for all eE (O,e U», 111/-p-epll'*.(xj_"X] <1I1/-plll*, where xo=O,
and X s = I, with an obvious meaning for the left-hand side of the inequality.

However, our problem is that it is not, in general, true that

To explain, if y is some fixed point in (0, 1), and if g E C(O, I] takes on both
positive and negative values in every neighborhood of y, then we do have

(3.4)

However, (3.4) may fail to hold if we merely know that g(y) = O. It is this
problem which we must deal with in considering 1111-P- eplll*.

Let us first dispose of those cases wherein 111,111* can be "decomposed" as
in (3.4). Suppose I ~ j ~ s - I. Our only requirements on the point xj were
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Jmj<Xj<Jmj+I' and (f-pl(xj) = 0. Assume now that Jmj<Jmj+l' We
claim that we can choose xj so that

III!- ft - eplll* = max{lll!- ft - epll'*.ro,xjl' III! - ft - eplll* ,[Xj,I]}'

for all e > 0.

To prove this, set Jmj = (aj , Pj), Jmj+ I = (Yj' Jj). Since Jmj <Jmj+l' Pj < Yj' If
there exist a, b, Pj ~ a <b~ Yj' for which!- ft == °on [a, b], then choose xj
to be any point of (a, b), and our claim is easily verified. Assume now that
this is not the case. By assumption,

(_l)j+l (f-pl> °
(-l)j (f-pl> °

and Jm' Jm.+ I are definite intervals. Thus there exist points z l' Z 2 for which
J J

Pj<ZI <Z2 <Yj' and

(-l)j (f-ft)(ZI) >0,

(_l)j+l (f-pl(Z2) >0.

Set

Clearly

(i) (f - pl(xj) = 0;

(ii) for every J> 0, there exists a Yl E (xj - J, x j ), and a
Y2 E (xj ' x j +J) for which

(-l)j (f - ft)(YI) > 0,

(_I)Hl (f-ft)(Y2) > 0.

Then

and

(-l)j p(x) >°
Thus, for all e >0, ! - ft - ep assumes both positive and negative values in
each neighborhood of xj '

We have therefore reduced our problem to the following situation: J m. =
J

640/35/2·5
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(aj , Pj), Jmj+ 1= (f3j, OJ) (and thus X j = Pj), and there exist posItIve
CI' c2 ,.•. , cn -4 0, such that, for n = 1,2,... , there is an open interval In 3 xi'
and a an = ± 1 satisfying

(i) an(J-p-enP)~O on In'

(ii) an L (J - P - cnP)(x) dx ~ Illf- plll*·.
If we can prove that such a situation cannot occur, then we will have proven
our theorem.

For n = 1,2,..., set In = (an' bn), and assume, without loss of generality,
that an = (-I)i+ I. We shall first prove that bn-4 Pj (=xj).

For every 0> 0, there exists a Zb E (f3j,Pj +0) for which
(-I)j (J- pj(zb) > 0, since Jm and Jm +1 are definite intervals. Thus, for n
sufficiently large, (-I)j (J-~-enP)(Zb»O, and, hence, Pj<bn<Zb<
Pj + O. Thus bn-4 pj . In a similar manner, it can be proven that, if an <aj for
an infinite number of n (which is only possible if xj_ 1 = aj ), then an -4 aj •

Before evaluating (-ly+151 (J-P-cnP)(x)dx, let us estimate from
above (-IY+15~;(J-p-enP)(:~)dx. We have (-ly+l(J-p-cnP)~O
on In' and (-1)1 P >0 and (-1)1 (J - p) ~°on (f3j' bn) (;;.Jmj +I' Therefore,
on (f3j,bn), If-p-enpl~cnlpl, and thus

. .b. .b.

(-1)1+ 1 J
llj

(J - P - cn p)(x) dx ~ en J
llj

Ip(x)1 dx

~ cnIlplloo (bn - PJ
= o(cn )·

Similarly, if an < aj for an infinite number of n, then

. .aj

(_1)1+ 1 J (J-p-cnP)(x)dx=o(cn),
a.

and, hence,

(-I)i+ 1 J (J-P-cnP)(x)dx
1.

= (-I)i+ 1f (J - P- Cn P)(x) dx + o(c n )·

I nn[aj.lljl

It is easily seen that a* = limn .... oo an E [aj' Pj)' Since (-1 y+ 1 (J - p - en p),
(_ly+l (f-p) and (_1)i+ 1p are all nonnegative on [aj,Pj], we obtain

. . . ~
(-1)1+ 1 J (J - p - cn p)(x) dx ~ (-1)1+ 1 J (f - ft)(x) dx - enC

J.n[aj,llj) a J

= Illf- ftlll* - cnC,
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where C = f~{ Ip(x)1 dx, a fixed positive constant. Thus

(_I)Hl r (f-p-cnp)(x)dx~lll/-plll*-cnC+o(cn)'
~'ln

and therefore, for n sufficiently large,

(-l)j+ I J (f - p - cnP)(x) dx < 1111- plll*·
I"

Theorem 3.2 is now completely established.

Remark. Theorem 3.2 states that the infimum (3.3) is attained if and
only if it is attained by the p* of Theorem 3.1. This does not imply that if
(3.3) is attained, then 1111- p* III = 1I1I - p* \11*· To see this, consider I of
Fig. 2, where each of the four isosceles triangles has base 1/4, and area 1.
Here inf{1111- pili: p E no} = 111I1I1 = 1, while inf{1111- plll*:p E no} =
111/111* =2.

4. ADDITIONAL RESULTS

We have thus far proven (or disproven) existence, uniqueness and charac
terization results for best polynomial approximation with respect to 111·111 and
111,111*, analogous to well-known theorems for 11·1100' In this section we prove
analogues, for 111·111 and 111·111*, of other known results concerning best
approximation in L 00.

Our first theorem identifies the monic polynomial of degree n + 1 with
minimal gauge. For n = 0, 1,2'00" let Tn and On denote the monic Chebyshev
polynomials of the first and second kind, respectively, of degree n, on [0, 1].
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THEOREM 4.1. Let n ? O. Then

2 _ 2 -2n-2
= -n-+-2 II T~ + 211 00 = -n-+--=2-

Proof It is known that II Tn + 2 1100 = 2 -2n-3. The polynomial Tn+2(x) is
monic, has n + 3 points of equioscillation 0 = Xo <Xl < ... <Xn+2 = 1, and
is strictly monotone on (xj_I'Xj), j= 1,... ,n+2. Therefore Un+l(x)=
T~+2(x)/(n + 2) is monic, and has the signum (_l)j+n on (xi-I' x;), for
j = 1,... , n + 2. Thus

. .X) _ (_l)j+n .x) _

(_l)J+n Lj_1 Un+l(x) dx = n + 2 Lj_1 T~+2(X) dx

(_I)Hn _ _
= n + 2 [Tn +2(x)- T n +2(Xi - 1)]

for j = 1,... , n + 2. The result now follows from Theorems 3.1 and 3.2.

Remarks. (a) Un+l(x) is also the unique monic polynomial of degree
n + 1 of minimum norm in L 1[0, 1]. However, it is not this which implies
Theorem 4.1. The latter follows, as its proof shows, from the fact that
Un + I (X) is the derivative of the L 00 [0, 1] minimal monic polynomial of
degree n + 2.

(b) From Theorem 4.1 we easily obtain the following extremal
property of Tn (X). Let n?l, and set, for every pE7rn, «p»=
max{lp(b)-p(a)l: O~a~b~ 1,p is monotone on [a,b]}. Then min{«p»:
p E 7rn, P monic} = «Tn»' and Tn(x) uniquely attains this minimum.

Let n ? 0 be fixed. For each IE C[O, 1], let p(f; x) E trn denote the unique
polynomial which attains the minimum in (3.1). Since the gauge 111·111 is not a
continuous mapping of C[O, 1] into the reals (see the sentence following
(2.4», it is natural to ask whether p(f; x) can be viewed as a continuous
mapping of C[0, 1] into itself.

THEOREM 4.2. Let f, 1m E e[O, 1], m = 1,2,..., and assume that 1m
converges uniformly to I on [0, 1]. Then p(fm; x) converges uniformly to
p(f; x) on [0, 1].



CHEBYSHEV AND L q THEORIES OF BEST APPROXIMATION 165

Proof Since Ilfmlloo is bounded, so is IIp(fm; ·)1100' Set

n

p(fm; x) == L akmlxk,
k=O

m= 1,2,....

Then akm) is bounded, for k = 0, 1,..., n. Since p(fm; x) is uniformly bounded
and (as is easily seen) equicontinuous on [0,1], it has a subsequence
p(fm,;x) which converges uniformly to some ft(x)E 7rn on [0,1]. We shall
prove that ft(x) == p(f; x). Since this will be true for every uniformly
convergent subsequence, the result follows.

We may assume that p(fm; x) itself converges uniformly on [0,1] to
ft(x) i=f(x). By Theorem 3.1, for m = 1,2,... , there exist disjoint (nonempty)
open intervals of [0, 1]: I\m) < ... < I~"'t\, and a am = ± 1, for which

and

(_I)k amJ' (fm(x) - p(fm; x)) dx ~ Illfm - p(fm; . )111,
/m)

k

for k= 1,...,n+2. Let Ikm)= (akml,f3km»), k= 1,...,n+2, m= 1,2, Along
some subsequence of m = 1,2,..., akml ~ ak and f3km)~ 13k for k = 1, , n + 2,
and am = a = ± 1. Thu's, for k = 1, 2,..., n + 2, with Ik = (ak ' 13k)'

and

(-ll a(f-pl~O on I k ,

(-I)k af (f-ft)(x)dx~ lim IlIfm-p(fm; ')111·
I k m--+oo

By (2.5), limm-->oo Illfm - p(fm; . )111 ~ Illf - ftlll· The polynomial ft(x),
therefore, satisfies the property of Theorem 3.1. Thus ft(x)==p(f;x), and
Theorem 4.2 is proved.

We now present analogues of a fundamental result of de La Vallee
Poussin [5].

THEOREM 4.3. Let f E C[0, 1), n ~ 0, and p E 7rn • Suppose a = ±1,
J 1 < ... < I n + 2 are disjoint (nonempty) open intervals of [0,1), and

k = 1,... , n + 2.

IfP i=p* of Theorem 3.1, then

Illf-p*lll> min (-I)k af (f-p)(x)dx.
I <;;k<;;n+ 2 h
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Remark. It is interesting to note that the last inequality may be false
when p == p*, even if we replace> by ~. The function f of Fig. 2 (end of
Section 3), with n = 0, a = - 1, J 1 = (0, 1/2), J 2 = (1/2, 1), p == p* == 0, is an
example.

Proof Assume the theorem is false. Thus there exist p E 7rn , pi p*,
a=±I, and J 1 , ..·, I n +2 , as above, for which

Illf- p* III ~ (_I)k a J(f- p)(x) dx,
J.

k = 1,... , n + 2.

We shall prove that, for k = 1,..., n + 2, there exists an x k E Jk for which
(_l)k a(p* - p)(xk) ~ 0. As in the beginning of the proof of Theorem 3.1,
this leads to a contradiction.

Suppose that there exists a k E {I,..., n + 2} for which (_I)k a( p * - p) <°
on Jk • Then

(_I)k a(f - p*)(x) > (_I)k a(f - p)(x) ~°
for all x E Jk , and therefore

Ilif - p*111 ~ (_I)k a J (f- p)(x) dx < (_l)k a J (f- p*)(x) dx
~ ~

~ Illf- p* III·

This contradiction proves the theorem.

THEOREM 4.4. Assume the first two sentences of Theorem 4.3. Then

Proof If p ip* of Theorem 3.1, then, from Theorem 4.3 and (2.3),

min (-I)kaj' (f-p)(x)dx<lllf-p*111
1 <;k<;n+2 J.

= inf Illf- qlll
qEn n

~ inf Illf - q 111* •
q E7r n

If infqEn.lllf- q111* is attained, then, by Theorem 3.2, it equals Illf- p* 111*
which is ~ each (_I)k a L. (f- p*)(x) dx.

It therefore remains to consider the case wherein p == p *, but
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infqe".III/-qlll* <111/-p*III*. Assume that the theorem does not hold in
this case, and choose pE 7Cn so that

IIII- plll* < min (_I)k a J" (f- p*)(x) dx <; 1III- p*III*· (4.1)
I <;;k<;;n+2 J k

As in the proof of Theorem 4.3, for k = 1,... , n + 2, there exists an xk E Jk for
which

Thus p=-p* (see the sentence following (3.2», contradicting (4.1), and the
theorem is proved.

We now provide an analogue of Bernstein's comparison theorem [1, p. 81

for 111·111.

THEOREM 4.5. Let J, g E qo, 1], and n ~ 0. Assume that pn+ I), g(n+ I)

exist, and pn + I) >0, throughout (0, 1). Assume also that

lor all x E (0, 1).

Then

min III g - pili <; min 1111- pili·
pEnn pEnn

Proof Let p* E 7C n satisfy

min 1III- pili = 1111- p* III·
PE1f: n

(4.2)

Since I(n+ I) >°on (0, 1), there exist points 0= X o <Xl < ... <x n+2= 1
such that, for k = 1,..., n + 2,

(_I)k+n (f-p*) >°
and (_I)k+n t~-J (f- p*)(x) dx = IIII- p* III. This follows from
Theorem 3.1 and from the fact (an application of Rolle's Theorem) that
1- p* cannot have more than n + 1 distinct zeros on [0, 1].

Let pE 7Cn interpolate g at XI"'" xn + I' Then

Ig-pl<;l/-p*1 on [0,1]. (4.3)

Since (g - p)(xk ) = 0, k = 1,..., n + 1, (4.3) implies that

~~~ III g - pili <; III g - pili = I ,l;::~+2 III g - plll,xk-I,xkl
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,Xk

~ I<Tt~+2 t-I IU- p*)(x)1 dx

= III!- p* III = min III!- pili·
pEnn

(4.3) has nothing whatsoever to do with the gauge 111·111. It is a known
result, and may be found, for example, in Kimchi and Richter-Dyn [4].

Remark. It is natural to ask whether Theorem 4.5 remains valid if 111·111 is
replaced by 111·111* (and min by inf). Since, under the hypotheses of
Theorem 4.5 (see its proof), III!- p* III = III!- p* 111* = inf{ III!- p 111* :p E 7C n },

while min{lllg-plll:pE7Cn}~inf{lllg-plll*:pE7Cn}' such a result may be
strictly stronger than Theorem 4.5. As a matter of fact, that result is true.
However, the above simple method of proof is insufficient to prove it. Our
proof, which we omit, is longer, more involved, and similar to that of
Theorem 3.2.
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